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ABSTRACT

Radiation patterns L...... computed for an axial slot on

an infinite circular cylinder coated with a radially inhomogeneous

plasma sheath. The relative dielectric constant was assumed to

have three types of radial dependence: monotonic with a minimum

at the inner edge of the sheath but with no portion of the sheath be-

low plasma resonance; monotonic with the inner portion of the

sheath below plasma resonance; parabolic with a minimum within

the sheath and the inner portion of the sheath below resonance.

The radial wave functions within the sheath are obtained in the form

of infinite series. The resulting radiation patterns are found to be

sharply directed in the forward direction relative to the equivalent

free-space pattern. These sharply forward-directed patterns are
consistent with the interpretation of a diffusion-type*prroces

within 1 a y e r s of the sheath below cutoff and a predominantly

/\•refraction-type' tproc e ss within layers above cutoff.
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I. INTRODUCTION

The recent literature contains numerous analyses of radiation

from slot antennas on dielectric-clad and plasma-clad cylinders. These

analyses are especially useful in predicting the requirements for com-

municating with high-speed, re-entry vehicles of cylindrical shape. With

few exceptions the sheath has been represented by a homogeneous coating

with an equivalent dielectric constant, determined by the "average"

properties of the sheath. It is to be expected, however, that important

effects caused by density gradients which exist in re-entry sheaths will

seriously modify the radiation characteristics of the homogeneous model.

J Consequently a study of the radiation pattern of a slotted cylinder

clad with a radially inhomogeneous sheath has been undertaken. The

assumed radial variation of the dielectric constant is highly idealized

(parabolic), yet 'it corresponds closely to sheath conditions of consider-

able physical interest. It can be shown that the equivalent dielectric

constant of a cold plasma is approximately:

S=1- Ne 2

To� m eowz

where N is the electron density. Estimates of the radial distribution of

electron density in the plasma sheath surrounding a hypersonic re-entry

vehicle indicate a maximum density at or near the surface of the vehicle,
4

and a monotonically decreasing density with increasing distance from the
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maximum (Ref. 1). Such a negative gradient of electron density would

cause the dielectric constant to increase with increasing radius from a

value less than unity to the free-space value. Furthermore, it may not

be unreasonable to assume that over a range of radii the electron density

is sufficiently large that below certain frequencies the dielectric constant

is negative and that region is opaque to propagating waves. By appro-

priate choice of parameters the radial variation of dielectric constant

assumed in the following section can be consistent with both relatively

steep negative gradients of electron density and portions of the sheath

below cutoff.

The equivalent dielectric constant used in the following analyses

is derived with the restriction that nonlinear effects, thermal effects, and

the effects of collisions may be neglected. It has been pointed out by

Samaddar in the analysis of a similar problem (Ref. 2) and by others

(Refs. 3 and 4) that this approximation is no longer valid if the dielectric

constant becomes vanishingly small; under such conditions it becomes

necessary to use the kinetic theory of plasma behavior. Although several

-6Of the numerical examples considered allow the dielectric constant to pass

through zero at some radius within the sheath, kinetic theory has not been

applied. Consequently the interpretation of some of the curves is limited

by the possibility that nonlinear and thermal effects in the vicinity of

vanishing dielectric constant may modify the patterns.



II. FORMULATION OF THE PROBLEM

An infinite, perfectly conducting circular cylinder of radius a is

coaxial with the z-axis (Fig. 1). The cylinder is covered by an inhomo-

geneous, isotropic plasma coating of permittivity e(kp) = o - N(k)e 2

I mdowzJ

and permeability lo extending from a <_ p !5 b. N(kp) is the electron

density, a function of radius. An infinite axial slot on the surface of the

cylinder (p =a) extends from - A < $ < + 6. Because of the assumed
2 - 2

nature of the fields in the slot, the tangential electric fields at p = a are:

E0 o (1)

0. (2a)

E(a, ) =

Vo A (Zb)

Within the plasma coating from a < p :_ b, the permittivity is

assumed to have the following dependence on radius:

E(p) = cof(kp) (3)

where

f(kp) = H(kp- kc) (kp- kcA) = H(kp-kc) 2 + H(kp- kc) (kc- kcA) (4)

Consequently f(kp), the relative dielectric constant, has three types of

radial dependence: monotonic with a minimum at p = a but with no portion

of the sheath below plasma resonance (Fig. 2a); monotonic with the inner

-3-



"portion of the sheath below plasma resonance (Fig. 2b); parabolic with

I| a minimum at Po > a and the inner portion of the sheath below plasma

resonance (Fig. 2c). In each case the outer edge of the sheath is defined

by e (b) = co.

The corresponding radial variations of electron density are also

indicated in Figs. 2a, 2b and Zc.

p

aa

Fig. I Cross Section Of Infinite Slotted

Cylinder With Plasma Sheath.

-4-
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III. SOLUTION OF MAXWELL'S EQUATIONS

IN THE INHOMOGENEOUS MEDIUM

For an assumed harmonic time dependence e -iwt (suppressed

throughout), Maxwell' s equations become:

Vx H7 =I we(P) (5a)

vx jt + i•°H (5b)
dt

The electric field may be eliminated, yielding

VxV xH (VxH) + w2j i ( 0 of(kp)) (6)

Since no radial component of the magnetic intensity will be excited, it is

expected that H can be expressed as the curl of a radially directed

vector function of p and $ (after the vector wave-function method of

Stratton and Hansen [Refs. 5 and 6]):

R V x { (kp) R(kp) H(0) a P} (7)

Substitution of this quantity into Eq. 6 yields

f (&M p) CIf( 0f(kp)Hk P )1iz =0

(8)

Equation 8 is satisfied by requiring the bracketed quantity itself to be

-6-



zero. This condition then yields the two equations defining R(kp) and H(0):

H"(0) + m2 H(O) 0 (9)

{kp)2}R"(kp)+ ('P){f(Iýo)-(Iko) f(k'p }R'(kp)+ {(kp)2f(kp)-m}~R(kp):0 (10)

The solutions of Eq. 9 are clearly

H(0) = Cmcosmo + DmsinmO ()

The solutions of Eq. 10 are two independent radial functions which will be

determined in a later section:

(1) (2)(k 1( Z
R(kp) = Am Rm)(kp) + Bm Rm (kp) (12)

In free space f(kp) = 1 and Eq. 10 becomes Bessel's equation

(kp) 2 R" (kp) + (kp) R' (kp) + [(kp)2-m2]R(kp) = 0 (10a)

In this special case R(j (kp) and Rr (kp) are the standard Bessel or

Hankel functions of integral order.

IV. MATCHING THE BOUNDARY CONDITIONS

For the geometry of the plasma-clad axially slotted cylinder

described previously, the fields may be expanded in the following

manner:

-7-



'Jk'
E# (p. #) .i. [AR)(p + B,,,R2)(kp)l cosmi (I 3a)

we (p) m =0 dpb

m=or n

jP (2 k cosbm (14b)
Hz(p,0) - -k 1. [ m,, (kP) cosm

m=O

Matching the boundary conditions on the tangential field at p = a and

p = b and letting A - O, it can be shown that

-i Gofml[fmz - ifm3] WC(a) Vo
Cm Mrz 0m f 2 where Go2 (15)

c l+BOm)Lfmz)Z + (fm3) w 7o ak

and

m[), (ka) Jm(kb)[m R (kb) - Ri) (kb)] - 'm+

(2 ) (I) L m~ (2) (1). J i(b)Rm(

.1Ri (kaf{Jm(kb b• Rbb (kb) - R•41 (kb)] - Jm+ l(kb) R{ý (kb)} (17a)

3 rm (2) (2) - (2)
= (ka)jNm(kb)[jk Rjn (kb) - RP) (kb)J Nm+1(kb) R;)(kb)

-PR)n (ka){Nm(kb)1bb P (kb)- n (kb)] - Nm+l (kb) Rj)(kb)8 (17b)



I
I

16 Upon substitution of Eq. 15 and the asymptotic value of the Haukel

function into Eq. 14b, the far-zone field becomes:
mir

k• 12k\3/2 •- 2"iT"m

Hz(kp) k--- )0•'1/2 eG( (kp - fml(fm2"ifm3) cosmo
"m'° (1+ 4m [([mZ2 + (Vm3 ]

(18)

V. SOLUTION FOR THE RADIAL FUNCTIONS

Inspection of Eq. 10 reveals that p = c is a regular point of the

differential equation. It is then to be expected that R;((kp) and R;)(kp)

can be expanded as an infinite power series about p = c (Ref. 7).

Equation 10 can then be rewritten:

"A(kp) R"' (kp) + B(kp) R' (kp) + C(kp) R(kp) = 0 (19)

where

4
"A(kp) = X an(kp -kc)n (20)

n-i

a1  H(kc)2 (kc- kcA) (Z0a)

a 2  H(kc) (3kc - 2kcA) (20b)

a 3 = H(3kc - kcA) (20c)

a 4 = H (Z0d)

"-9-



and

B(kp) = bn(kp-kc)n (21)

b0 = -H(kc) 2 (kc-kcA) -a, (21a)

bI = - H(kc) (3kc -kcA) (21b)

b2 = -3H(kc) (21c)

b3 = -H = -a 4  (21d)

and

C(kp) = cn (kp-kc)n (22)
n= i

CI = "rn 2 H(kc-kcA) (22a)

c2 = H[H(kc)2(kc -kcA) 2 - rn 2 ] (22b)

c 3 = 2H 2 (kc) (2kc -kcA) (kc -kcA) (22c)

c4 = H' [6(kc)2 - 6(kc) (kcA) + (kCA) ] (22d)

c5 = Z-H2 (2kc-kcA) (22e)

c6 = H 2  
(22f)

If Rm(kp) is assumed to be of the form

Rm(kp) dn (kp - kc)n+a (23)
n= 0

then substitution into Eq. 19 yields the following indicial equation:

a[a,(I1-1)+ bo] "0 (24)

-10-



The solutions of Eq. 24 are

a 0 (24a)

C 1 - -- = 2 (24b)
a,

Following the procedure outlined in Ref. 7 if a solution is assumed using

the algebraic smaller of the two indices, two independent infinite series

are generated if m = 0. It can be shown that if m = 0:

(1) C (1) n+2
Ro0 (kp) = dn (kp- kc)()

n-0

where

0 do 1 (25a)

(1) ((1)n 3 a +cZ ~ )3

(l) ( f(n+ l)(naZ+bl) 0 dnl+n(n1)a3 +b 2] 0dn- 2 +[(n- )n-3)a4 c 2] 0dýl) 3

+c 3 odn_ 4 +c 4 0 dn-5 + c 5 0 dn 6 + c 6 0dn -7}/(n+2)nal, n I (25b)

and

40 (2)
R(0 (kp)= 1 0 dn (kp - kc)n (26)

n'0

where

d(2) 1 0 (26a)

(2) = 0 (26b)

(2) = 0 (26c)
0 -d2 =



(2) ,(2) (2)
(d _•d(in" ! ,)- 2) a2 + b .0d)+ (n+2)[(n.3) a3 + bz]o dn.2

(2) () (2)
+ +[(n-3)(n-5)a,4+ c2]odn-3 + c 3 0 dn- 4 + c4 odn. 5

+ c 5 0n6 + c 6 0 d n- 7 /n(n-Z)a! , n > 3 (26d)

In the case m ý 0, both roots of the indicial equation yield the

same series:

() I1 C n+2
Rm(1)(kp) F dn )(kp - kc) (27)

where

m do I (27a)

+ [(n-1)(n-3)a 4 +c2]mdn-3+c3mdn4-C4md+ +CSmdn-6

(1)
+ c 6  dn_ 7}/n(n+2)aI, n>I (27b)

(1) (1)

R 0  (kp) is the limiting case of Rm (kp) with m = 0. A second inde-

pendent solution can be generated of the form (Ref. 7)

(2) (1) 2+O 'kp -kc )n (28)Rm (kp) = Rm (kp) In(kp -kc) 2 + Z mfn
n=o

Substitution of Eq. 28 into Eq. 19 then yields the recursion relations for

S~m fn:

Mro = -{4a,/cl} (28a)

-12-



=mf = 0 (28b)

Smf2 = 0 (28c)

fn- 4(n- )al m di)2 + 2[(2n 3)a2 + bl] m dn-3 [(n 5)a34

+ 4(n-4)a4mn15+ (n-1 l)[(n-2)a 2 + bl]rfn. 1 + [(n-2)[(n-3)a 3 + b21÷c ijm in-2

+[(n-3)(n-5)a 4 + C2]mfn.3+c3 mfn-4 + C4mfn_5+C5mfn-6

+ c6 mfn. 7}/n(n-Z)al, n >:3 (28d)

Equations 25, 26, 27, and 28 can then be substituted into Eq. 18

$ to yield the far-field pattern. Considerable simplification can be accom-

plished by substitution of the Wronskian relations, developed in Appendix A,

into the formulas. The far-field pattern then becomes

P% R [(#)y + [ I(] (29)

whe re

R(O) (IcXkb-kc)(kb-kCA)f fo2 .....

(kb)(kckCA) (fo2)F+(f°o3 m:l m [(fm.)+ (fim) f oita0

(kc)(kb -kcXkb- MCAf f0 )4f 3 + 8( w [sn_ Xa+CS1ý M
I() (kbXkc-kcA --07 (fo Min Msi PM,?+C (fj Co.

3(31)

-13-



In the case of a vanishing sheath, i. e., a = b, it can easily be
0

shown that Eq. 29 reduces to

i WP()= L e Z om (32)

mao (1+8 0 m) Hl)(kb)

which is the well-known result for a slotted cylinder in free space.

VI. NUMERICAL EVALUATION OF THE FIELDS

The magnitude of the far-zone field pattern (cf. Eq. 18) has been
*

evaluated on a large digital computer for various configurations of

dielectric constant. These patterns are plotted in the following figures.

An inner sheath radius of ka = 5 and an outer radius of kb = 6 have been

,maintained throughout. Only half of each pattern has been plotted since

symmetry exists about 0 = 0. Each pattern has been normalized to its

maximum value (consistently in the forward direction). Consequently,

direct amplitude comparisons may not be made between individual patterns.

However, comparison of relative pattern shapes has been facilitated by

this normalization.

The field patterns plotted in Fig. 3 resulted from a dielectric

constant variation of the type indicated in Fig. Za: a monotonic variation

with a minimum at the inner edge of the sheath but with no portion of the

-14-
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sheath below plasma resonance. The corresponding radial dependence

of dielectric constant and associated electron density are plotted in Fig. 4.

The free-space pattern of a slotted cylinder without any sheath has been

included for reference. This pattern exhibits ripples at large angles

which may be interpreted as interference among circurnferentially

directed waves. When an inhomogeneous sheath is present these ripples

no longer exist, with the exception of a small local maximum at 180 deg.,

a characteristic feature of many types of diffraction patterns. In addition,

the sheath patterns indicate increased power radiated in forward directions,

relative to the free-space pattern, with a correspondingly reduced power

radiated toward the rear. It is evident from a comparison of the three

patterns that greater forward enhancement results from steep sheath

gradients.

Although within the sheath the condition

1 de(p) << (33)
ke(p) dp

is not satisfied, the resulting field patterns in Fig. 3 appear to be

consistent with a quasi-geometrical ray-optics interpretation. Inasmuch

as the dielectric constant increases with inc reasing radius, each "ray"

emerging from the slot is refracted continuously in the forward direction,

thus reducing or eliminating the effects of circumferential waves and

producing field patterns enhanced in the forward directions. The steeper

• -16-
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sheath gradients produce greater bending of the "rays" in the forward

direction and, consequently, greater forward enhancement. Although

this interpretation appears valid, the steep gradients within the sheaths

undoubtedly produce other effects (e. g. scattering) in addition to

refraction, all of which are included in Eq. 18, the complete solution of

Maxwell' s equations.

The field patterns plotted in Figs. 5a, 6a, and 7a have been

derived for inhomogeneous sheaths that are partially below plasma

resonance. The corresponding dielectric constant variations are plotted

in Figs. 5b, 6b, and 7b, respectively. In each case the minimum value of

dielectric constant, with the associated maximum electron density, occurs

at the inner edge of the sheath, p = a. It is evident that (1) wide-angle

ripples no longer exist, and (2) these patterns are more sharply forward-

directed than either the free-space pattern or the patterns considered

previously for inhomogeneous sheaths above plasma resonance (cf. Fig. 3).

Propagating waves cannot exist in the region below plasma

resonance. Instead the fields are evanescent in nature, decaying strongly

along each "ray path". Consequently the strongest "rays "1 emerging from

the cutoff region will have undergone the shortest "ray paths", resulting in

a sharply forward-directed pattern. This effect has been previously calcu-

lated for homogeneous sheaths below plasma resonance (Ref. 8). The "rays"

will undergo additional forward bending upon emerging into the outer region2
that, although above cutoff, is radially inhomogeneous. Consequently, it is

-18-
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not unreasonable to assume that both the "diffusion-type process within

the inner region and the "refraction-type" process within the outer will

contribute to a relatively sharp maximum in the forward direction.

Comparison of Figs. 5-7 with Fig. 3 indicate that processes within the

cutoff region may contribute more to the high degree of forward direc-

tivity than processes within the outer.

However, the electromagnetic effects taking place within inhomo-

geneous sheaths of this type are extremely complex. No apparent

correlation is evident between pattern features and sheath distributions

for the three examples considered in Figs. 5-7. Of the three, Fig. 6a is

the most directive, although the corresponding sheath for this pattern is

intermediate in both cutoff layer thickness and sheath gradient. Since the

dielectric constant becomes zero within the sheaths considered in Figs. 5-7,

it is evident from Eq. 33 that the approximations of geometrical ray optics

are even less valid than previously. Furthermore, increased gradients

may result in more significant scattering effects. A simple interpretation

is not readily apparent for sheaths of this type.

The field pattern in Fig. 8a was also derived for an inhomogeneous

sheath partially below plasma resonance. However, the minimum value

of dielectric constant occurs within the cutoff region at po where po > a,

as indicated in Fig. 8b. Again, there is a high degree of direztivity in the

forward direction. However, there is no significant difference between

this pattern and those considered in Figs. 5-7.

-25-
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VII. SERIES CONVERGENCE

t

The circle of convergence for each of the radial series (Eqs. 25,

26, 27, 28) is defined by Ikp -kc I<(kc -kcA) (Ref. 7). These series

converge extremely rapidly if I kp - kc I< 1. This condition was satisfied

in the computation of Figs. 5-8, i. e., when a portion of the sheath was

below plasma resonance. It was found that for m : 34 (the greatest

value of m considered) the 35-term and 99-term series were indistin-

guishable (to the four significant figures of the computer printout roundoff).

As an additional check, the Wronskian relation agreed to within four

significant figures. In each case the field patterns were identical for the

35-term and 99-term series.

In cases where Ikp -kcl Ž- 1, a discrepancy in the fourth significant

figure was noticed between the 35-term and 99-term series for mn > 12.

This resulted in a slight variation (in the fourth significant figure) in the

small values of the field patterns between the 35-term and 99-term results.

However, the field patterns were identical for the 60-term and 99-term

series, and the Wronskian relations again agreed within the printout

roundoff for the 35-term and 99-term series. It was evident that by taking

60 terms or more all series converged to four significant figures for the

range of parameters considered. In cases where thicker sheaths or sheaths

of larger radius are considered, convergence may be a matter of increased

significance.

-28-



REFERENCES

1. Rotman, W. and G. Meltz, "Experimental Investigation of the

Electromagnetic Effects of Reentry," AFCRL 87, Bedford, Mass.,

March 1961.

2. Samaddar, S.N., "Wave Propagation in a Cylindrical Wave Guide

Containing Inhomogeneous Plasma Involving a Turning Point,"

Can. J. Phys., Vol.41, No.1, p. 1 1 3 , January 1963.

3. Istrrm, E., Arkiv Fysik, Vol. 19, No. 13, p. 163, 1961.

4. Ginzburg, V.L. , "Propagation of Electromagnetic Waves in Plasma,"
Gordon and Breach Science Publishers Co., Inc., New York, 1961.

5. Stratton, J. A., "Electromagnetic Theory," McGraw-Hill Book Co.,
New York, 1941.

6. Hansen, W.W., Phys. Rev., Vol. 47, p. 139, 1935.

7. Whittaker, E.T. and G.N. Watson, "A Course of Modern Analysis,"
The Macmillan Company, New York, 1943, Chapter X.

8. Rusch, W. V. T., "Radiation from a Plasma-Clad Axially Slotted

Cylinder," J. Research Natl. Bur. Standards, Vol. 670, No. 2, p. 203,
March-April 1963.

ACKNOWLEDGMENT

The author wishes to express his indebtedness to Dr. Cavour Yeh

for numerous discussions concerning this problem. He also wishes to

acknowledge the assistance of Mr. R. Stone in preparing the computer

program and Mr. D. Nakatani in plotting the curves. The computations

were carried out at the Western Data Processing Center at UCLA.

2-9-



APPENDIX A

DERIVATION OF THE WRONSKIAN RELATIONS

Since both Rrn (kp) and R•)(kp) satisfy Eq. 10, the following pair

of equations can be formed:

{(p) }ppp)+ ('P) {f(0~)-(kp)dwf(T~k) (IR)n~)f~pfp-m)lR"m(kp)=0(l
f } + f(

# df f kp

{(kpf}RM"(ý)+)f (kp)(~) h) }Rm(IsP)+ {(%ý)f Ckp) -m'} Fr~n(kp)=0 (A2)fm (kt) 0 (AZ

(2)()Multiplying (Al) by R;)(kp) and (AZ) by Rm (kp) and subtracting yields:

r(,)H # 4) (1) RN)d%0

f (Y d(kp)J

Rm[(kp)Rm(kp) m Kp M0(A3)

This can be rewritten as

d '{(1), (2 (1) (2)'(k) d~k~ I. (kp)J (4

-- -m (kp) R .)(kp) - Rm (kp) kp - In (f(kP) A4d(kp) d(kp) (kp)

Integrating:

RLW,(kp) R;ý (kP) - R2)(kp) R!ý)(kp) -_pA (A5)
(kp)

The constant of integration, A, can then be evaluated by taking the leading

terms of the left-hand side of Eq. A5 as p - c. Hence

rn 0: A - (Zkc) (A6)
H (kc - kcA)

n 1 1: A 8(kc )3  (A?)
m2 H(kc - kcA)
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